The Glial Scar-Monocyte Interplay: A Pivotal Resolution Phase in Spinal Cord Repair
نویسندگان
چکیده
The inflammatory response in the injured spinal cord, an immune privileged site, has been mainly associated with the poor prognosis. However, recent data demonstrated that, in fact, some leukocytes, namely monocytes, are pivotal for repair due to their alternative anti-inflammatory phenotype. Given the pro-inflammatory milieu within the traumatized spinal cord, known to skew monocytes towards a classical phenotype, a pertinent question is how parenchymal-invading monocytes acquire resolving properties essential for healing, under such unfavorable conditions. In light of the spatial association between resolving (interleukin (IL)-10 producing) monocytes and the glial scar matrix chondroitin sulfate proteoglycan (CSPG), in this study we examined the mutual relationship between these two components. By inhibiting the de novo production of CSPG following spinal cord injury, we demonstrated that this extracellular matrix, mainly known for its ability to inhibit axonal growth, serves as a critical template skewing the entering monocytes towards the resolving phenotype. In vitro cell culture studies demonstrated that this matrix alone is sufficient to induce such monocyte polarization. Reciprocal conditional ablation of the monocyte-derived macrophages concentrated at the lesion margins, using diphtheria toxin, revealed that these cells have scar matrix-resolving properties. Replenishment of monocytic cell populations to the ablated mice demonstrated that this extracellular remodeling ability of the infiltrating monocytes requires their expression of the matrix-degrading enzyme, matrix metalloproteinase 13 (MMP-13), a property that was found here to be crucial for functional recovery. Altogether, this study demonstrates that the glial scar-matrix, a known obstacle to regeneration, is a critical component skewing the encountering monocytes towards a resolving phenotype. In an apparent feedback loop, monocytes were found to regulate scar resolution. This cross-regulation between the glial scar and monocytes primes the resolution of this interim phase of spinal cord repair, thereby providing a fundamental platform for the dynamic healing response.
منابع مشابه
P62: The Effect of Valproic Acid Therapy on the Glial Scar Formation after Acute Spinal Cord Injury Fallowing by Motor Vehicle Traffic Crashes
لطفاً به چکیده انگلیسی مراجعه شود.
متن کاملMicroglial Activation in Rat Experimental Spinal Cord Injury Model
Background: The present study was designed to evaluate the secondary microglial activation processes after spinal cord injury (SCI). Methods: A quantitative histological study was performed to determine ED-1 positive cells, glial cell density, and cavitation size in untreated SCI rats at days 1, 2, and 4, and weeks 1, 2, 3, and 4. Results: The results of glial cell quantification along the 4900...
متن کاملRole of endogenous neural stem cells in spinal cord injury and repair.
Spinal cord injury is followed by glial scar formation, which has positive and negative effects on recovery from the lesion. More than half of the astrocytes in the glial scar are generated by ependymal cells, the neural stem cells in the spinal cord. We recently demonstrated that the neural stem cell-derived scar component has several beneficial functions, including restricting tissue damage a...
متن کاملScar Removal, Cell Transplantation, and Locomotor Training- Strategies to Improve Tissue Repair and Functional Recovery in Rat with Chronic Spinal Cord Injury
Great progress has been made over the past three decades with studies that have focused on the reversal of the symptoms of spinal cord injury (SCI). This progress has given hope that there is a possibility that tens of thousands of patients afflicted with this malady could gain both sensory and motor function again. According to estimates there are about 400,000 patients with chronic SCI who ar...
متن کاملA Mathematical Model of Regenerative Axon Growing along Glial Scar after Spinal Cord Injury
A major factor in the failure of central nervous system (CNS) axon regeneration is the formation of glial scar after the injury of CNS. Glial scar generates a dense barrier which the regenerative axons cannot easily pass through or by. In this paper, a mathematical model was established to explore how the regenerative axons grow along the surface of glial scar or bypass the glial scar. This mat...
متن کامل